中高温条件下 6061-T651 铝合金激光冲击强化研究

任旭东 阮 亮* 皇甫喁卓 占秋波 杨慧敏 张永康

(江苏大学机械工程学院, 江苏 镇江 212013)

摘要 利用高功率、短脉冲 Nd: YAG 激光对6061-T651 铝合金进行表面冲击强化处理,并分别在 200 ℃、300 ℃、400 ℃和 500 ℃的温度下对其进行性能测试,从残余应力、显微硬度和微观组织等方面分析了激光冲击处理(LSP) 对其在高温条件下性能的影响。研究结果表明中高温条件下激光冲击 6061-T651 铝合金的强化效果明显。200 ℃ 和400 ℃时试件的最大残余压应力出现在次表层,且温度越高残余压应力释放得越快,激光冲击硬化层深度约为 0.3 mm,500 ℃时的晶粒平均尺寸要比 400 ℃时的大,晶粒尺寸和强化相是提高硬度的主要原因,不连续且粗大的 晶界析出物提高了 6061-T651 铝合金的抗腐蚀性能。

关键词 激光技术;激光冲击处理;6061-T651铝合金;高温处理;强化效果

中图分类号 TN249 文献标识码 A doi: 10.3788/CJL201239.0303010

Experimental Research of Laser Shock Processing 6061-T651 Aluminum Alloy during Elevated Temperature

Ren Xudong Ruan Liang Huangfu Yongzhuo Zhan Qiubo Yang Huimin Zhang Yongkang (School of Mechanical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China)

Abstract The 6061-T651 aluminum alloy samples are treated by laser shock processing (LSP) with high power and short pulse Nd: YAG laser, and then are kept warm at 200 \degree C, 300 \degree C, 400 \degree C and 500 \degree C respectively. The effects of 6061-T651 aluminum alloy on mechanical properties after LSP are analyzed from residual stress, micro-hardness and microstructure during elevated temperature. The results indicate that the strengthening effect of 6061-T651 aluminum alloy by LSP at elevated temperature is obvious. The maximum residual stress of specimens are tested in subsurface at 200 \degree C and 400 \degree C. At the same time, the higher the temperature, the faster the residual stress releases. The hardening layer depth of 6061-T651 aluminum alloy is about 0.3 mm. The primary cause of improving micro-hardness is grain size and strengthening phase, and the pitting resistance of 6061-T651 aluminum alloy is improved obviously by the big and discontinuous precipitated phase.

Key words laser technique; laser shock processing; 6061-T651 aluminum alloy; high-temperature treatment; strengthening effect

OCIS codes 140.3390; 140.3538

1 引 言

6061 铝合金属于 Al-Mg-Si 系列合金,具有良 好的机械加工性能,如成型性、焊接性和耐腐蚀性被 广泛应用于航天建筑等行业^[1,2]。激光冲击处理 (LSP)技术是利用功率密度为吉瓦每平方厘米量 级、脉冲宽度为纳秒量级的强激光束辐照材料表面 产生的冲击波来提高金属材料的强度、硬度、耐磨性 和耐应力腐蚀性能,特别能有效改善金属材料的抗 疲劳断裂性能^[3,4],与常规的加工方法相比,具有无 可比拟的优点,在某些重要机器设备上的零部件强 化方面发挥着重要作用。随着 6061 铝合金广泛地 应用,对其力学性能的要求越来越高,而力学性能往 往与内部的微观组织相关,内部微观组织又受到工 作温度的影响。因此,有必要研究铝合金在高温条

收稿日期: 2011-11-14; 收到修改稿日期: 2011-12-05

基金项目:国家自然科学基金(50905080),中国博士后基金(20100471385)和博士后特别资助基金(201104547)资助课题。 作者简介:任旭东(1977—),男,博士,副教授,主要从事激光加工与延寿等方面的研究。E-mail: renxd@ujs.edu.cn

^{*} 通信联系人。E-mail: ruan-liang@163.com

件下的微观组织特征,尤其是晶界特征,以便于进一步理解和控制铝合金的使用性能。

目前,研究挤压、喷丸强化和振动强化等机械方 法对铝合金的机械性能和微观组织影响较多^[5~8], 但激光冲击处理对铝合金在高温条件下性能的影响 还未见研究报道。本文主要对高温条件下激光冲击 6061-T651 铝合金的残余应力、显微硬度和微观组 织进行研究与讨论,目的在于研究中高温条件下激 光冲击能否改善 6061-T651 铝合金的机械性能。

2 试验材料及方法

试验材料为6061-T651铝合金,试样用线切割加

工成尺寸为 \$ 16 mm×5 mm的试块,试样外貌如 图 1(a)所示。试样的化学成分如表 1 所示。

表 1 6061-T651 铝合金的化学成分(质量分数,%)

Table 1 Chemical compositions of 6061-T651 aluminum alloy (mass fraction, %)

Cu	Mn	Mg	Zn	Cr	Ti	Si	Fe	Al
0.15~0.40	0.15	0.8~1.2	0.25	0.04~0.35	0.15	0.4~0.8	0.7	Bal.

试验采用高功率短脉冲 Nd: YAG 激光器,试验 参数如表 2 所示。选用厚 3 mm 的水层作约束层, 用美国 3M 公司的铝箔作为保护涂层,铝箔厚度为 0.1 mm。冲击强化方式为无重复单面处理,冲击区 域为 10.5 mm×10.5 mm,半圆搭接保证了冲击效 果的均匀性,激光冲击强化后的试样外貌如图 1(b) 所示。激光冲击处理后,将试样放入箱式电阻炉内 分别加热到 200 ℃、300 ℃、400 ℃、500 ℃后保温 30 min,出炉空冷 1 h,再测其残余压应力。残余应 力在 X-350A 残余应力测试仪上进行测试,测量允 许误差为±20 MPa,对于误差超过 25 MPa 的残余 应力点再进行了复测。采用 HXD-1000TMSC/ LCD 型显微硬度计测其硬度,加载载荷为 0.49 N, 加载时间为 10 s,每个试样检测 5 个点,数据取平 均值。

Table 2 Laser implements technique parameter

Туре	Value
Pulse energy /J	6
Spot diameter /mm	3
Laser pulse width /ns	10
Laser frequency $/Hz$	5
Laser wavelength /nm	1064

3 结果与分析

3.1 残余应力

图 2 为激光冲击处理后试样在深度方向上的残 余应力分布图。由图 2 可以看出,激光冲击处理后 的试样,在常温下其最大的残余压应力在试样表面, 随着深度的增加残余压应力越来越小,距表面大约 0.36 mm 处残余应力发生质变,由压应力变成拉应 力。但在 200 °C 和 400 °C 时试件的最大残余压应力 不是在表层而是在次表层,分析认为激光诱导的巨 大冲击压力波作用材料表面时材料表面产生缺陷或 裂纹,在高温条件下表面残余压应力更易发生释放 从而导致表面压应力值降低,但由于材料内部应力 是平衡的,所以使次表层的残余压应力值反而增大。 试样在200℃时试件表面和次表面的残余压应力都 要比400℃时的大,由此可推断激光冲击处理后的 试件在深度方向的残余压应力随着温度的升高而降 低,温度越高,残余压应力释放得越快,应力热松弛 的动力学过程可以用 Zener-Wert-Avrami 公式来解 释[9]。经激光冲击后材料表面形成的高幅值残余压 应力可以平衡材料使用过程中的拉应力,从而延缓

Fig. 2 Distribution of residual stress versus depth of LSP on specimens

疲劳裂纹的产生和扩展,有效提高了材料的抗疲劳 寿命^[10]。

3.2 显微硬度

激光冲击 6061-T651 铝合金的截面显微硬度分 布如图 3 所示。6061-T651 铝合金基体原始状态显 微硬度为 160.6 HV,激光冲击处理的试样表面显 微硬度为 215.5 HV,硬度提高了 55 HV 左右。未 经激光冲击处理的试样硬度随着深度的增加其硬度 值变化不大,激光冲击处理后的试样硬度随着深度 的增加而减小。但在 300 ℃时,深度方向上的硬度 值要比 500 ℃时的低,因为在 500 ℃[图 4(d)]时晶 粒比 300 ℃[图 4(c)]时的大,同时有大量的析出相 均匀地弥散在晶内或晶界,使其硬度有所提高。在 同一温度下和未经激光冲击处理的试样相比,激光 冲击处理后的试样硬度明显大很多,在0.3 mm处经 激光冲击处理和未经激光冲击处理的硬度值已经相 差不大,说明在高温条件下激光冲击硬化层深度约 为0.3 mm。

Fig. 3 Distribution of micro-hardness versus depth of LSP on specimens

图 4 6061-T651 铝合金在不同温度下的微观组织。(a) 无 LSP; (b) LSP; (c) LSP+300 ℃; (d) LSP+500 ℃ Fig. 4 Optical micrographs of the 6061-T651 aluminium alloy at different temperatures.

(a) Without LSP; (b) LSP; (c) LSP+300 $^\circ\!\mathrm{C}$; (d) LSP+500 $^\circ\!\mathrm{C}$

应力波在材料内部传播时,其峰值压力随传播 距离的增加成指数规律衰减^[11],当应力波峰值压力 低于材料的动态屈服强度 σ_H 后,材料将不再发生塑 性变形。激光诱导的冲击应力波在金属表面时较 强,对材料的强化效果明显,随着应力波在材料内部 传播距离的增加,强度逐渐衰减,对材料的强化效果 也逐渐减弱。因此,在材料表层的显微硬度值较大, 随着距表面距离的增加,材料的显微硬度值逐渐减 小,直到与未经激光冲击处理的显微硬度值大小基 本一致。

3.3 微观组织

将试样沿光斑中心剖开,对截面用砂纸预磨后 再机械抛光,然后用乙醇清洗,最后用氢氟酸、盐酸、 硝酸和水的体积比为 2:3:5:190 的混合酸进行腐 蚀,采用金相显微镜进行微观组织观察。

图 4 为 6061-T651 铝合金经不同温度处理后的 金相组织。从图 4(a)可看出,未激光冲击处理的原 始组织分布不均匀,原始组织晶粒比较粗大。经激 光冲击处理后晶粒发生细化,晶粒平均尺寸明显减 小,如图 4(b)所示。从图 4(c)可知激光冲击处理后 在试样表层由于不同的位错运动导致了表面层原始 晶粒内位错墙和位错缠绕结构,这些位错墙和位错 缠绕结构阻止了晶界的迁移,使得在 300 ℃时由于 保温温度较低、时间短,没有完成再结晶,组织出现 了碎晶和枝状晶。图 4(d) 为激光冲击处理试样经 500 ℃保温后的金相组织,可以发现激光冲击影响 层晶粒尺寸明显变大目晶粒大小基本相同,由于在 激光冲击影响层存在应变,高温处理时释放畸变能 促使再结晶晶粒发生长大,同时 500 ℃的高温使热 激活能增高,导致晶界迁移速率增快,使再结晶发生 的相对充分。从图 4(d)还可以看出大量的析出相 均匀地弥散在晶内或晶界。在结晶过程中生成粗大 的析出相在晶界呈非连续分布,分析认为这些析出 相为β相,粗大的析出相在一定程度上阻碍了位错 的运动[12,13],提高了强化效果。剥落腐蚀本质是晶 界上优先发生腐蚀,产生体积大于所消耗的金属体 积的不溶性腐蚀产物,产生"楔入效应",引起分层剥 落。合金的腐蚀性能主要由晶界析出相的尺寸和分 布决定[14],当晶界析出相连续时,在腐蚀的环境中 很容易造成沿晶界连续溶解,为抗剥落腐蚀与抗应 力腐蚀提供连续的阳极腐蚀通路,降低合金的抗剥 落腐蚀与应力腐蚀性能[15],但当晶界析出物不连续 且粗大时,晶界析出物阻止了连续腐蚀的通路,从而 提高了 6061-T651 铝合金的抗腐蚀性能。

4 结 论

激光冲击处理是一种有效改善 6061-T651 铝合 金在高温条件下机械性能的表面处理技术,研究结 果表明,激光冲击强化处理 6061-T651 铝合金,使其 在高温条件下残余应力和显微硬度有了显著提高, 200 ℃和 400 ℃时试样的最大残余压应力在次表 层,激光冲击硬化层深度约为 0.3 mm,晶粒尺寸和 强化相是提高硬度的主要原因,不连续且粗大的晶 界析出物提高了 6061-T651 铝合金的抗腐蚀性能, 这说明在中高温情况下,激光强化效果也十分明显。

参考文献

- 1 Na Wang, Zhimin Zhou, Guimin Lu. Microstructural evolution of 6061 alloy during isothermal heat treatment[J]. J. Mater. Sci. Technol., 2011, 27(1): 8~14
- 2 L. P. Troeger, E. A. Starke. Microstructural and mechanical characterization of a superplastic 6xxx aluminum alloy [J]. *Mater. Sci. Engng. A*, 2000, 277(1-2): 102~113
- 3 Zhang Yongkang, Chen Jufang, Xu Renjun. Experimental research of laser shock strengthening AM50 magnesium alloy[J]. *Chinese J. Lasers*, 2008, **35**(7): 1068~1072

张永康,陈菊芳,许仁军. AM50 镁合金激光冲击强化实验研究 [J]. 中国激光,2008,**35**(7):1068~1072

4 Ren Xudong, Zhang Tian, Zhang Yongkang et al.. Improving fatigue properties of 00Cr12 alloy by laser shock processing[J]. Chinese J. Lasers, 2010, 37(8): 2111~2115

任旭东,张 田,张永康等.激光冲击处理提高 00Cr12 合金的 疲劳性能[J].中国激光, 2010, **37**(8): 2111~2115

5 Zhang Yongan, Zhu Baohong, Liu Hongwei *et al.*. Influence of G/M ratio on microstructures and properties of spray-formed ultra-high strength aluminum alloys[J]. *Chinese Journal of Rare Metals*, 2006, **30**(2): 209~212

张永安,朱宝宏,刘红伟等.气/液比对喷射成形超高强铝合金 显微组织及性能的影响研究[J].稀有金属,2006,30(2): 209~212

6 Hu Lanqing, Li Maolin, Wang Ke et al.. Microstructure and characterization of surface nanocrystallization of aluminum alloy [J]. The Chinese Journal of Nonferrous Metals, 2004, 14(12): 2016~2020

胡兰青,李茂林,王 科等. 铝合金表面纳米化处理及显微结构 特征[J]. 中国有色金属学报,2004,14(12):2016~2020

- 7 Wei Shengchun, Zhang Shouzhuo, Zhang Ruiying *et al.*. Effect of multi-axial plane compression on 6063 aluminum alloy[J]. *Journal of Inner Mongolia University of Science and Technology*, 2010, **29**(2): 184~187
 魏盛春,张守茁,张瑞英等. 变向平面挤压对 6063 铝合金的影响[J]. 内蒙古科技大学学报, 2010, **29**(2): 184~187
- 8 Yang Yonghong, Zhang Hongwei, Qiao Mingjie *et al.*. Peening forming by double face for thin aluminium skin of airplane[J]. *Electromachining & Mould*, 2008, (6): 69~72 杨永红,张红卫,乔明杰等.飞机铝合金薄板件对喷成形技术 [J]. 电加工与模具, 2008, (6): 69~72
- 9 P. Juijerm, I. Altenberger. Residual stress relaxation of deeprolled Al-Mg-Si-Cu alloy during cyclic loading at elevated temperatures [J]. Scripta Materialia, 2006, 55 (12): 1111~114
- 10 C. S. Montross, Tao Wei, Lin Ye *et al.*. Laser shock processing and its effects on microstructure and properties of metal alloys: a review[J]. *Int. J. Fatigue*, 2002, **24**(10): 1021~1036
- 11 Hong Xi, Wang Shengbo, Guo Dahao *et al.*. Research on the attenuation property of the laser induced shock wavepropagating in aluminum[J]. *Chinese Journal of Quantum Electronics*, 1998, 15(5): 474~478

洪 晰,王声波,郭大浩等.激光冲击波在铝靶中衰减特性的研究[J]. 量子电子学报,1998,15(5):474~478

- 12 Chen Zhiguo. Microstructural evolution and properties in microalloyed aluminium alloys [D]. Changsha: Central South University, 2004. 16~17 陈志国. 微合金化铝合金的微观组织演变与性能研究[D]. 长 沙:中南大学, 2004. 16~17
- 13 D. Maisonnette, M. Suery, D. Nelias *et al.*. Effects of heat treatments on the microstructure and mechanical properties of a 6061 aluminium alloy[J]. *Mater. Sci. Engng. A*, 2011, **528**(6): 2718~2724
- 14 D. Najjar, T. Magnin, T. J. Warner *et al.*. Influence of critical surface defects and localized competition between anodic dissolution and hydrogen effects during stress corrosion cracking of a 7050 aluminium alloy[J]. *Mater. Sci. Engng. A*, 1997, 238(2): 293~302
- 15 D. Mcnaughtan, M. Worsfold, M. J. Robinson. Corrosion product force measurements in the study of exfoliation and stress corrosion cracking in high strength aluminium alloys [J]. *Corrosion Sci.*, 2003, 45(10): 2377~2389